(Autonomous)
(ISO/IEC - 27001-2005 Certified)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1		Attempt any five of the following:		10
	(a)	Define "Chain survey".		
	Ans.	Chain Survey: The Survey in which only linear measurements are taken in the field with the help of chain and remaining work such as plotting, calculation etc. are done in the office, is called as chain survey.	2	2
	(b) Ans.	Enlist various methods of levelling. Methods of leveling:		
		Methods of leveling: i. Simple levelling ii. Differential levelling iii. Longitudinal levelling iv. Cross section levelling v. Fly levelling vi. Check levelling vii. Reciprocal levelling viii. Profile levelling	each (any four)	2
	(c) Ans.	Define plane survey and geodetic survey. Plane survey: The survey in which curvature of the earth is not taken in to consideration is called as plane survey. Geodetic survey: The survey in which curvature of the earth is taken in to consideration is called as geodetic survey.	1	2
	(d) Ans.	State any two causes of local attraction. Local attraction caused due to attraction of magnetic needle by following sources:		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	(b) Ans.	iii. Back bearing : The bearing observed in the backward direction or opposite direction of survey with respect to north direction in clockwise manner is called back bearing. iv. Bearing of line: The horizontal angle made by survey line with respect to meridian (North direction) is known as bearing of line. Explain the principle of surveying. Principle of surveying are as follows: i. To work from whole to part. According to the first principle, the whole area is first enclosed by main stations and main survey lines as shown in figure above. The area is then divided into a number of parts by forming well conditioned triangles. A nearly equilateral triangle is considered to be the best well conditioned triangle. The main survey lines are measured very accurately with a standard chain. The sides of triangles are measured. The purpose of this process of working is to prevent accumulation of error. ii. To locate a new station by at least two measurement from fixed reference points. The new stations should always be fixed by at least two measurements from fixed reference points. Linear measurements refer to horizontal distance measured by chain or tape. Angular measurements refer to the magnetic bearing or horizontal angle taken by a prismatic compass or theodolite. The new station or ground point is located using linear measurement or angular measurement or both measurements.	1 1 2 2	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	$\begin{gathered} \text { (c) } \\ \text { Ans. } \end{gathered}$	Explain temporary adjustment of dumpy level. Temporary adjustment of dumpy level: I. Setting up the level. i. The level fixed on tripod. ii. The legs of tripod stand are well spread so that the level will remain stable on tripod. iii. Bring all the three foot screws in the Centre of their run so that they can be turned clockwise or anticlockwise as required, for Levelling purpose. iv. Adjust the height of the instrument so that the observer can Comfortably see through the telescope and note the readings. v. Fix two legs of tripod and adjust third leg in such a way that the levelling head will become as horizontal as possible by eye judgment. II. Levelling up the level. i. The base of the tripod is already leveled with the help of cross bubble. ii To make accurate adjustment of the level, the longitudinal level is adjusted in the Centre of its run, with the help of three foot screws. iii. Make the bubble parallel to the any selected pair of foot screws. Now; turn both the foot screws either inward or outward with the help of foot screws till the bubble appears in the center. iv. Turn the telescope through 90° and now with the help of third screw bring the bubble of levelling tube in the center. v. Repeat above process, until bubble will remain at centre in both position. Then levelling is said to be completed. III. Focusing the eye piece. i. Hold a sheet of white paper in front of the objective glass 4 to 6 cm away from objective glass and see through the eye piece. ii. Turn the eye piece inwards or outwards in the socket so that the cross hair on the diaphragm appears sharp and clear. IV. Focusing the object glass. i. Direct the telescope towards any object, say a levelling staff in the field which is kept at a distance. See through eyepiece whether the staff is visible, distinct or not. ii. If not, then turn the focusing screw till the image is distinct and clear. The cross hair on the diaphragm should also be seen clearly.	1	4

Que. No.	Sub. Que.			Model Answers		Marks	Total Marks
Q. 2	$\begin{gathered} \text { (d) } \\ \text { Ans. } \end{gathered}$	Convert the following bearings from WCB to QB i) $247^{\circ} 30^{\prime}$ ii) $167^{\circ} 45$, iii) $51^{\circ} 15$, iv) $333^{\circ}{ }^{\circ}{ }^{\circ}$					
		Sr No	WCB	Conversion	QB		
		i.	$\Theta_{1}=247^{\circ} 30^{\prime}$	As Θ_{1} lies in III $^{\text {rd }}$ Quadrant $\begin{aligned} \mathrm{RB} & =\Theta_{1}-180^{\circ} \\ & =247^{\circ} 30^{\prime}-180^{\circ} \\ & =\mathrm{S} 67^{\circ} 30^{\prime} \mathrm{W} \end{aligned}$	S $67{ }^{\circ} 30^{\prime} \mathrm{W}$	1	
		ii.	$\begin{gathered} \Theta_{2}= \\ 167^{\circ} 45 \end{gathered}$	As Θ_{2} lies in II $^{\text {nd }}$ Quadrant $\begin{aligned} \mathrm{RB} & =180^{\circ}-\Theta_{2} \\ & =180^{\circ}-167^{\circ} 45^{\prime} \\ & =\mathrm{S} 12^{\circ} 15^{\prime} \mathrm{E} \end{aligned}$	S $12^{\circ} 15^{\prime} \mathrm{E}$	1	4
		iii.	$\Theta_{3}=51^{\circ} 15$,	$\begin{aligned} & \text { As } \theta_{3} \text { lies in } I^{\text {st }} \text { Quadrant } \\ & \text { RB }=\mathrm{WCB} \\ & \quad=\mathrm{N} 51^{\circ} 15^{\prime} \mathrm{E} \\ & \hline \end{aligned}$	N $51^{\circ} 15^{\prime} \mathrm{E}$	1	
		iv.	$\Theta_{4}=333^{\circ} 30^{\prime}$	As Θ_{4} lies in IV ${ }^{\text {th }}$ Quadrant $\begin{aligned} \mathrm{RB} & =360^{\circ}-\Theta_{4} \\ & =360^{\circ}-333^{\circ} 30^{\prime} \\ & =\mathrm{N} 26^{\circ} 30^{\prime} \mathrm{W} \end{aligned}$	$\mathrm{N} 26^{\circ} 30^{\prime} \mathrm{W}$	1	
Q. 3		Attempt any three:					12
	(a) Ans.	Explain importance of benchmark in levelling. i. As bench mark is the ground point whose elevation or R.L. is known or preassumed; the back sight reading (first reading) is taken on it. This back sight (BS) reading is useful to calculate height of instrument (HI) in line of collimation. This HI is useful to calculate R.L.'s of other ground points, in all types of levelling. ii. Thus bench mark (BM) is essential to commence the survey work. It is not possible to calculate reduced levels (RL's) of ground points without knowing BM. iii. The BM is important to check the RL calculations by applying arithmetical checks in both methods i.e. HI method and Risefall method. iv. The BM is useful to check the one day's observation through check levelling.				$\begin{gathered} 1 \\ \text { each } \end{gathered}$	4

$\begin{aligned} & \text { Que. } \\ & \text { No. } \end{aligned}$	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	(b) Ans.	Explain procedure for computing volume by i) Trapezoidal formula ii) Prismoidal formula I. Trapezoidal formula: Procedure for computing the volume by trapezoidal formula is as follows: i. Divide the total length of plan (L-section) in to number of strips (cross sections). In this method areas are divided into series of trapezoids as shown in figure below. ii. Calculate the areas of each section (i.e. ends , intermediate from A_{1} to A_{n}) iii. Calculate volume of earth work in cutting and embankment by using formula. Trapezoidal formula: $\mathrm{V}=\mathrm{D} / 2 \mathrm{x}\left(\mathrm{A}_{0}+2 \mathrm{~A}_{1}+2 \mathrm{~A}_{2}+\ldots \ldots .2 \mathrm{~A}_{\mathrm{n}-1}+\mathrm{A}_{\mathrm{n}}\right)$ Where, $\mathrm{A}_{0,}, \mathrm{~A}_{1}, . . \mathrm{A}_{\mathrm{n}-1} \mathrm{~A}_{\mathrm{n}}$-Areas of cross sections. In this method areas are divided into series of prismoids as shown in figure below. II. Prismoidal formula: Procedure for computing the volume by prismoidal formula is as follows: i. Divide the total length of plan (L-section) in to number of strips (cross sections). In this method areas are divided into series of prismoids as shown in figure above. ii. Calculate the areas of each section (i.e. ends, intermediate from A_{1} to A_{n}) iii. Calculate volume of earth work in cutting and embankment by using formula. iv. Prismoidal formula : $\mathrm{V}=\mathrm{D} / 3 \mathrm{x}\left(\mathrm{A}_{0}+4\left(\mathrm{~A}_{1}+\mathrm{A}_{3}+\ldots.\right)+2\left(\mathrm{~A}_{2}+\mathrm{A}_{4}+\ldots ..\right)+\mathrm{A}_{\mathrm{n}}\right)$	2	4

$\begin{array}{\|l} \hline \text { Que. } \\ \text { No. } \\ \hline \end{array}$	Sub. Que.	Model Answers	Marks	Total Marks
	$\begin{gathered} \text { (c) } \\ \text { Ans. } \end{gathered}$	Explain four uses of contour map. Following are uses of contour map: i To draw longitudinal section and plan of given map. ii To determine inter-visibility between two points. iii To trace contour gradient and to locate route for alignments of railways, roadways, canals etc. iv To measurement of drainage areas. v. To calculate reservoir capacity. vi To find intersection of surfaces and measurement of earth work. vii To determine nature of ground in proposed area.	1 each (any four)	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& \multicolumn{8}{|c|}{Model Answers} \& Marks \& Total Marks \\
\hline \multirow[t]{10}{*}{Q. 6} \& \& \& \& \& \& \& \& \& \& \multirow[b]{10}{*}{$11 / 2$

2} \& \multirow{10}{*}{6} \\
\hline \& \& Stn \& B.S. \& I.S. \& F.S. \& Rise \& Fall \& R.L. \& Remark \& \& \\
\hline \& \& 1 \& 2.345 \& \& \& \& \& 129.500 \& First RL \& \& \\
\hline \& \& 2 \& 1.650 \& \& 2.310 \& 0.035 \& \& 129.535 \& CP1 \& \& \\
\hline \& \& 3 \& \& 2.210 \& \& \& 0.560 \& 128.975 \& \& \& \\
\hline \& \& 4 \& 1.470 \& \& 1.850 \& 0.360 \& \& 129.335 \& CP2 \& \& \\
\hline \& \& 5 \& 1.850 \& \& 1.925 \& \& 0.455 \& 128.880 \& CP3 \& \& \\
\hline \& \& 6 \& \& \& 1.480 \& 0.370 \& \& 129.250 \& Last RL \& \& \\
\hline \& \& Σ \& 7.315 \& \& 7.565 \& 0.765 \& 1.015 \& \& \& \& \\

\hline \& \& \multicolumn{8}{|c|}{$$
\begin{gathered}
\text { Check : } \Sigma \text { B.S. }-\Sigma \text { F.S. }=\Sigma \text { Rise }-\Sigma \text { Fall }=\text { Last R.L. }- \text { First R.L. } \\
7.315-7.565=0.765-1.015=129.50-129.25 \\
-0.25=-0.25=-0.25
\end{gathered}
$$} \& \& \\

\hline
\end{tabular}

